Centrosome reorientation in wound-edge cells is cell type specific.
نویسندگان
چکیده
The reorientation of the microtubule organizing center during cell migration into a wound in the monolayer was directly observed in living wound-edge cells expressing gamma-tubulin tagged with green fluorescent protein. Our results demonstrate that in CHO cells, the centrosome reorients to a position in front of the nucleus, toward the wound edge, whereas in PtK cells, the centrosome lags behind the nucleus during migration into the wound. In CHO cells, the average rate of centrosome motion was faster than that of the nucleus; the converse was true in PtK cells. In both cell lines, centrosome motion was stochastic, with periods of rapid motion interspersed with periods of slower motion. Centrosome reorientation in CHO cells required dynamic microtubules and cytoplasmic dynein/dynactin activity and could be prevented by altering cell-to-cell or cell-to-substrate adhesion. Microtubule marking experiments using photoactivation of caged tubulin demonstrate that microtubules are transported in the direction of cell motility in both cell lines but that in PtK cells, microtubules move individually, whereas their movement is more coherent in CHO cells. Our data demonstrate that centrosome reorientation is not required for directed migration and that diverse cells use distinct mechanisms for remodeling the microtubule array during directed migration.
منابع مشابه
In vitro large-wound re-endothelialization. Inhibition of centrosome redistribution by transient inhibition of transcription after wounding prevents rapid repair.
Rapid, efficient re-endothelialization of large wounds is characterized by a specific sequence of cytoskeletal events that occur after wounding. Wounds 1.5 mm wide were created down the middle of confluent porcine aortic endothelial monolayers to study regulation of repair. The wounded cultures were incubated for short periods with cycloheximide or actinomycin D to test the hypothesis that tran...
متن کاملInhibition of Centrosome Redistribution by Transient Inhibition of Transcription After Wounding Prevents Rapid Repair
Rapid, efficient re-endothelialization of large wounds is characterized by a specific sequence of cytoskeletal events that occur after wounding. Wounds IS mm wide were created down the middle of confluent porcine aortic endothelial monolayers to study regulation of repair. The wounded cultures were incubated for short periods with cycloheximide or actinomycin D to test the hypothesis that trans...
متن کاملCell polarity triggered by cell-cell adhesion via E-cadherin.
Cell polarity is orchestrated by numerous extracellular cues, and guides events such as chemotaxis, mitosis and wound healing. In scrape-wound assays of cell monolayers, wound-edge cells orient their centrosomes towards the wound, a process that appears to depend on the formation of new cell-extracellular-matrix adhesions as cells spread into the wound. In direct contrast to scrape-wounded cell...
متن کاملCdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity
Scratch-induced disruption of cultured monolayers induces polarity in front row cells that can be visualized by spatially localized polymerization of actin at the front of the cell and reorientation of the centrosome/Golgi to face the leading edge. We previously reported that centrosomal reorientation and microtubule polarization depend on a Cdc42-regulated signal transduction pathway involving...
متن کاملQuantification of microtubule nucleation, growth and dynamics in wound-edge cells.
Mammalian cells develop a polarized morphology and migrate directionally into a wound in a monolayer culture. To understand how microtubules contribute to these processes, we used GFP-tubulin to measure dynamic instability and GFP-EB1, a protein that marks microtubule plus-ends, to measure microtubule growth events at the centrosome and cell periphery. Growth events at the centrosome, or nuclea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 13 6 شماره
صفحات -
تاریخ انتشار 2002